Technical day: Deep Energy Retrofit in Buildings

"Use of Low Exergy Systems for Building Renovations"

- EBC Annex 49

Tekn. Dr. Dietrich Schmidt

Objectives

Energy savings and reduction of CO₂-emissions:

low valued and environmentally sustainable energy sources

for heating and cooling of buildings.

Through utilization of the **EXERGY** concept

Why exergy?

- Matching of the energy quality of demand and supply

Approach: Exergy concept

matching the Quantity AND Quality levels of supply and demand

Quantity ⇒ Energy savings

Quality ⇒ use of low quality sources
e.g. solar thermal heat, ground/air
heat

Benchmarking of system solutions

Benchmarking of system solutions

Benchmarking of system solutions

Low Exergy Buildings?

Match quality levels of supply and demand by exploiting low quality, waste or environmental sources

...no combustion in buildings

...but LowEx buildings are not Passive House buildings

Low Exergy Buildings?

minimize primary energy:

by exploiting low quality, waste or environmental sources

...no combustion and minimum high exergy (primary energy) input

Source: ETH

LowEx Building Systems

Heat/cold emissioning systems and storages

LowExX: Low Exergy Systems in Existing buildings

Opportunities

Application of LowEx systems:

- opens the gate to use of renewables in existing building stock
- provides improved indoor climate
- can improve energy performance & indoor climate without destroying the (aesthetic) quality of the building
 - especially important for cultural heritage/monuments

Sweden: Katarineholm - dwelling (1938)

Insulation improved

Heat pump + existing LT-radiators

Fan coils for (free) cooling

O Compressor

Magnetic flowmeter

→ Flow direction

Norway: ElCo house ('30-ies)

- Several options for LT-heating systems in existing dwelling
- Comparison between Lab and Practice
- Very interesting technologies for existing buildings

Lightweight floor heating in combination with impact sound insulation in existing buildings

Wall heating combined with additional insulation in existing building

Netherlands: Tax Office - Arnheim (1970)

Netherlands: Tax Office - Arnheim (1970)

Netherlands: Tax Office - Arnheim (1970)

renovation

Reasons for LowEx:

- Cooling need
- Limited space
- Integration of heating & cooling
- possible future use of renewables

Type of LT-Heating/HT-Cooling system:

Climate ceiling for C&H

Heat source:

Condensing Boilers (> renewable heat sources)

Slovenia: St. Martins Church - Teharje (1906)

pilot project "Wall-Temperisation" (41m x 16m, 7700 m³)

Slovenia: St. Martins Church - Teharje (1906)

Adding a central heating system

Reasons for LowEx:

- Extended use
- No gas
- Aesthetics inside

Type of LT-Heating system:

Floor

Heat source:

Heat Pumps (earth / ground water)

Conventional

'Dry' mounting system

- Reversible
- Reduced height
- Less mass
- Various finishes

Community case study: Heerlen (The Netherlands)

- LowEx approach for the Mine Water Project

Concluding remarks

- Exergy demands for heating/cooling are very small
 Energy demands are high.
- 2. Supply as low exergy as possible to the room space
 - avoid combustion processes
 - and minimize electricity input
- 3. Find suitable low-exergy sources in the immediate/local environment.
- 4. Development of system-components and their smart integration are necessary

Conclusions for LowExX

LowEx in existing buildings is possible

- ž in all different kind of buildings
- ž Limited heating demand / envelope needs to be improved!
- ž A key factor is a good timing.
- ž Combination with renovation

Annex 49

Low Exergy Systems for High-Performance Buildings and Communities

New Activity on "LowEx Communities" (EBC Annex 64) is in preparation!

www.annex49.com www.lowex.net

